Synthesis of 2-(1-Methyl-1,2,5,6-tetrahydropyridin-3-yl)benzimidazoles
 Myung Hee Jung*, Jung Mee Park, Ihl-Young Choi Lee, and Mija Ahn

Korea Research Institute of Chemical Technology, P.O. Box 107, Yusong, Taejon 305-600, Korea
Received March 28, 2002

Abstract

A useful approach for the synthesis of pharmacologically active tetrahydropyridinylbenzimidazoles is described. 2-Pyridin-3-ylbenzimidazoles 3a-d have been synthesized by condensation of 3-pyridinecarboxaldehyde $\mathbf{1}$ with substituted 1,2-phenylenediamines 2a-d following oxidative cyclization with iodobenzene diacetate. Methylation of 3a-d with iodomethane and potassium hydroxide, subsequent formation of methylpyridinium salts 4a-d and 7a-d and reduction thereafter afforded tetrahydropyridinylbenzimidazoles $\mathbf{5 a}-\mathbf{d}$ and $\mathbf{8 a - d}$.

J. Heterocyclic Chem., 40, 37 (2003).

The development of M_{1}-selective receptor agonists, which play an important role in cognition function, has been the focus of recent research efforts for Alzheimer's disease (AD) treatment [1]. Arecoline (I, Figure 1), a naturally occurring alkaloid, is one of the first clinical drugs used for AD [2]. Despite being an M_{1}-agonist, its lack of subtype selectivity and poor metabolic stability caused by the ester moiety, has hindered its use as a therapeutic agent. However, continuing efforts to synthesize derivatives of this lead compound have brought about xanomeline (II) [3] and milameline (III) [4] showing improved pharmacological and pharmacokinetic properties. Both of these M_{1} selective muscarinic receptor agonists are in clinical trials. Chemically, they possess a 1,2,5,6-tetrahydropyridine ring and the unstable ester moiety of arecoline has been replaced with its bioisosteres alkoxythiadiazole and alkoxyimino groups. The structure of xanomeline (II) shows a resemblance to that of tetrahydropyridinylbenzoxazoles (IV) [6] and tetrahydropyrimidinylbenzoxazoles (V) [7] previously prepared in our laboratory (Figure 2). These compounds, which possess a benzoxazole ring, exhibited interesting biological activity as potential agrochemicals as well as clinical drugs. Herein, we report the synthesis of tetrahy-dropyridinyl-benzimidazoles that are bioisosteric congeners of the M_{1} selective muscarinic receptor agonists shown in Figure 1 (Scheme 1 and Scheme 2).

Figure 1

IV

Figure 2

The general procedure for the synthesis of pyridinylbenzimidazoles has been to treat nicotinic acid with the appropriate 1,2 -phenylenediamine [8]. However, in a previous study, we have succeeded in preparing pyridinylbenzimidazoles $\mathbf{3}$ in good yields from 3-pyridinecarboxaldehyde 1 and 1,2phenylenediamines 2 with iodobenzene diacetate via hypervalent iodine oxidative intramolecular cyclization. The 5 -substituted compounds 3b-3d were similarly prepared using compounds $\mathbf{2 b} \mathbf{b} \mathbf{- 2 d}$. The structural assignment of these 5-substituted benzimidazoles was based on results of X-ray crystallography, ${ }^{1} \mathrm{H}$ NMR muster of aromatic protons and our previous experiments [6]. The spectral data for compounds 3a-d are summarized in Table 1.

Table 1
${ }^{1} \mathrm{H}$ NMR Data and ${ }^{13} \mathrm{C}$ NMR Data of Compounds 3a-d

Compd	Proton		Carbon							
				m]			$\delta[$			
	2'-H	4'-H	5'-H	6'-H	C-2	C-2'	C-3'	C-4'	C-5'	C-6'
3a	9.36	8.58	7.72	8.75	149.0	147.7	126.3	134.0	124.3	150.8
3b	9.21	8.42	7.58	8.61	151.6	148.2	128.2	135.8	125.8	151.3
3c	9.14	8.38	7.53	8.58	151.7	148.6	127.7	136.2	125.1	151
3d	9.37	8.52	7.66	8.75	154.2	148.1	125.7	134.5	124.3	151

Subsequent treatment of compounds 3a-d with a large excess of methyl iodide in acetone for 20 hours afforded the quaternized compounds $\mathbf{4 a - d}$. The quaternization occurred only at the pyridine nitrogen due to its higher basicity. The spectral data for compounds $\mathbf{4 a - d}$ are summarized in Table 2. What is notable here is that unlike compounds 3a-d, compounds 4a-d did not show the signals corresponding to C-8 and C-9 (numbering based on arbitrary numbering of X-ray Crystallography data - see Figure 3) in the ${ }^{13} \mathrm{C}$ NMR spectra [9]. Moreover, only one of the carbons of the benzimidazoles is observed and appears at 123.8 ppm in $\mathbf{4 a}$, 113.4 ppm in $\mathbf{4 b}, 124.1 \mathrm{ppm}$ in $\mathbf{4 c}$, and 119.2 ppm in $\mathbf{4 d}$. Upon acquisition of HMQC and HMBC spectra of $\mathbf{4 c}$, this

Scheme 1

carbon is determined to correspond to C-5. In the HMQC spectrum of $\mathbf{4 c}{ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ correlations corresponding to H -4/C-4 and $\mathrm{H}-7 / \mathrm{C}-7$ are observed showing that $\mathrm{C}-4$ and $\mathrm{C}-7$ resonate at ~ 119 and 114 ppm respectively. Interestingly, protons corresponding to C-4 and C-7 also correlate with carbons resonating at 112 and 124 ppm , respectively as well. This indicates that the two tautomeric forms of compound $\mathbf{4 c}$, corresponding to 6 -chloro- and 5 -chloro-2-pyridin-3-yl- 1 H -benzimidazole, exist and both are represented in the proton and carbon spectra of $\mathbf{4 c}$.

Table 2

${ }^{1} \mathrm{H}$ NMR Data and ${ }^{13} \mathrm{C}$ NMR Data of Compounds 4a-d

Compd	Proton			Carbon				C-5'	C-6'
		$\delta[\mathrm{ppm}]$		δ [ppm]					
	2'-H	5'-H,	$\mathrm{N}^{+} \mathrm{CH}_{3}$	C-2	C-2'	C-3'	C-4'		
4a	9.74	8.32	4.49	145.5	144.0	128.3	140.9	130.0	145.4
4b	9.65	8.29	4.45	145.0	143.6	128.2	140.3	130.1	144.1
4c	9.65	8.40	4.47	146.9	144.2	128.0	141.1	128.2	145.8
4d	9.79	8.42	4.54	150.0	143.7	128.3	141.7	129.0	146.5

Treatment of methylpyridinium salts 4a-d with sodium borohydride in cold ($-20^{\circ} \mathrm{C}$) methanol yielded tetra-
hydropyridinylbenzimidazoles 5a-d. Again the ${ }^{13} \mathrm{C}$ NMR spectral data shown in Table 3 show that only aromatic carbon is observed for compounds 5a-d, and as for $\mathbf{4 c}$ this likely corresponds to C-6. The corresponding chemical shifts were 123.1 ppm for $\mathbf{5 a}, 113.7 \mathrm{ppm}$ for $\mathbf{5 b}, 124.5 \mathrm{ppm}$ for $\mathbf{5 c}$, and 119.8 ppm for $\mathbf{5 d}$. The coupling constants were observed to be similar to those of compounds $\mathbf{4 a - d}$.

Table 3
${ }^{1} \mathrm{H}$ NMR Data and ${ }^{13} \mathrm{C}$ NMR Data of Compounds 5a-d

A commonly used literature method [10] for methylation of benzimidazole is to add compounds 3a-d to a suspension of 5 equivalents KOH in acetone, and then adding $3 \sim 5$ equivalents of methyl iodide. This causes methylation at either nitrogen of the benzimidazole yielding a $1: 1$ mixture

6A

6B
Carbon

$\begin{array}{llllllllllll}6 a & 9.05 & 8.11 & 7.46 & 8.73 & 150.6 & 149.8 & 126.5 & 136.8 & 123.6 & 150.5\end{array}$
$\begin{array}{lllllllllll}\mathbf{6 A b} & 9.01 & 8.12 & 7.48 & 8.74 & 150.7 & 149.7 & 126.6 & 136.7 & 123.5 & 150.4\end{array}$
$\begin{array}{lllllllllll}\mathbf{6 B b} & 9.00 & 8.12 & 7.47 & 8.73 & 149.8 & 149.6 & 126.6 & 136.6 & 123.5 & 150.3\end{array}$
$\begin{array}{lllllllllll}\text { 6Ac } & 9.00 & 8.12 & 7.49 & 8.77 & 151.8 & 149.7 & 126.1 & 136.9 & 123.6 & 150.9\end{array}$
$\begin{array}{lllllllllll}\mathbf{6 B c} & 9.01 & 8.12 & 7.49 & 8.76 & 151.4 & 149.7 & 126.0 & 136.8 & 123.6 & 150.8\end{array}$
of the 5-/6-substituted isomer of compounds $\mathbf{6 a - d}$. Isomers $\mathbf{6 b}$ and $\mathbf{6 c}$ were successfully separated by column chromatography and were distinguishable based on the results of X-ray crystallography of compound 6Ab (Figure 3).

Table 5
${ }^{1} \mathrm{H}$ NMR Data and ${ }^{13} \mathrm{C}$ NMR Data of Compounds 8a-c

		A					8B			
Compd	Proton				Carbon					
	δ [ppm]				$\delta[\mathrm{ppm}]$					
	2'-H	4'-H	5'-H	6'-H	C-2	C-2'	C-3'	C-4'	C-5'	C-6'
8 a	3.46	6.38	2.53	2.75	153.5	56.2	127.5	133.0	27.0	52.2
8Ab	3.43	6.34	2.51	2.72	153.6	56.6	127.7	132.6	27.1	52.2
8Bb	3.47	6.36	2.55	2.77	152.2	56.2	127.0	131.7	26.6	51.8
8Ac	3.51	6.45	2.56	2.80	154.8	56.3	129.6	133.6	26.0	52.0
8Bc	3.41	6.41	2.52	2.70	154.5	56.3	129.9	133.2	26.9	52.0

Compound 6d, however, remained as a mixture and thus subsequent reaction proceeded without further purification. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compounds $\mathbf{6 a - d}$ are shown in Table 4. Compounds 7a-d were prepared using the method used for compounds $\mathbf{4 a - d}$ followed by reduction with sodium borohydride in methanol to yield compounds $\mathbf{8 a - d}$. The spectral data of $\mathbf{8 A a}$-d and $\mathbf{8 B a - d}$ are summarized in Table 5.

EXPERIMENTAL

Melting points were determined on a Thomas-Hoover apparatus and are uncorrected. Infrared spectra were recorded on a Mattson Genesis II FTIR. Nuclear magnetic resonance spectra were measured on a Brucker AM-300 spectrometer. Mass spectra were determined on JEOL JMS-DX 303 Mass Spectrometer JEOL JMA-DA 5000 mass data system focusing high resolution mass spectrometers. Single crystal X-ray diffractometry: The intensity data were collected at room temperature on a Siemens P4 four-circle X-ray diffractometer with graphite-monochromated

Mo $K \alpha$ radiation $(\lambda=0.71073 \AA)$. All calculation in the structural solution and refinement was performed using the Siemens SHELXTL crystallographic software package on a Silicon Graphics system. All the non-hydrogen atoms were refined anisotropically; all the hydrogen atoms fixed at the calculated positions with the isotropic thermal parameters were included in the final structure factor calculations.
General Procedure for Preparation of 2-Pyridin-3-ylbenzimidazoles (3a-d).

A mixture of 3-pyridinecarboxaldehyde (1) (5.0 mmol) and 1,2phenylenediamine (2) (5.0 mmol) in absolute ethanol (100 ml) was stirred at room temperature for 2 hours. To the reaction mixture was added iodobenzene diacetate (7.0 mmol). After 1 hour stirring, the solvent was removed under reduced pressure, the residue diluted with ethyl acetate and then washed with aqueous NaHCO_{3} solution. The organic layer was separated, washed with brine, dried over anhydrous MgSO_{4}, and then evaporated in vacuo. The residue was purified by column chromatography on silica gel (n-hexane:ethyl acetate) to give the title compounds 3a-d.

2-Pyridin-3-yl-1 H -benzimidazole (3a).

This compound was obtained as yellow powder, yield 52%, $\mathrm{mp} 247-248^{\circ}$; ir (potassium bromide): $3040(\mathrm{CH}), 1490,1450$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 9.36$ (d, 1H, C2'-H), 8.75 (dd, 1H, C6'H), 8.58 (m, 1H, C4'-H), 7.72 (m, 3H, C4-H, C7-H, C5'-H), 7.40 (m, 2H, C5-H, C6-H); ${ }^{13} \mathrm{C}$ nmr ($\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 150.8$ (C-6'), 149.0 (C-2), 147.7 (C-2'), 143.9, 135.0 (C-8, C-9), 134.0 (C-4'), 126.3 (C-3'), 124.3 (C-5'), 123.3, 122.3, 119.3, 111.7 (arom. C).

Anal. Calcd. For $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{3}: \mathrm{C}, 73.83 ; \mathrm{H}, 4.65 ; \mathrm{N}, 21.52$. Found: C, 73.84; H, 4.62; N, 21.53.

5-Methoxy-2-pyridin-3-yl-1 H -benzimidazole (3b).

This compound was obtained as yellow brown powder, yield 75%, mp 174-176 ; ir (potassium bromide): $3050(\mathrm{CH}), 1650$, $1435 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 9.21\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C} 2{ }^{\prime}-\mathrm{H}\right), 8.61(\mathrm{dd}$, 1H, C6'-H), 8.42 (m, 1H, C4'-H), 7.58 (m, 2H, C5'-H, C7-H), 7.08 (d, 1H, C4-H), 6.91 (dd, 1H, C6-H), 3.84 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$); ${ }^{13} \mathrm{C} \operatorname{nmr}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 158.9$ (C-5), 151.5 (C-2), 151.2 (C-6'), 148.8, 136.5 (C-8, C-9), 148.2 (C-2'), 135.8 (C-4'), 128.2 (C-3'), 125.8 (C-5'), 127.8, 125.8, 114,6 (arom. C), $56.4\left(\mathrm{OCH}_{3}\right)$; $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}(225.0902), \mathrm{MS}: \mathrm{m} / \mathrm{z}=225.0904$.
Anal. Calcd. For $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O} \bullet 1 / 2 \mathrm{H}_{2} \mathrm{O}$: C, 66.65 ; H, 5.16 ; N , 17.94. Found: C, $66.96 ; \mathrm{H}, 5.09 ; \mathrm{N}, 17.52$.

5-Chloro-2-pyridin-3-yl-1H-benzimidazole (3c).

This compound was obtained as yellow crystal, yield 78%, mp $147-148^{\circ}$; ir (potassium bromide): $3100(\mathrm{CH}), 1440,1420 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 9.14$ (d, 1H, C2'-H), 8.58 (dd, 1H, C6'-H), 8.38 (m, 1H, C4'-H), 7.53 (m, 3H, C5'-H, C4-H, C7-H), 7.18 (dd, $1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 151.8$ (C-6'), 151.7 (C-2), 148.6 (C-2'), 136.2 (C-4'), 130.1, 129.5 (C-8, C-9), 127.7 (C-3'), 125.9 (C-5), 125.1 (C-5'), 118.9, 117.3, 116.4 (arom. C); $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{Cl}(229.0407)$, MS: $\mathrm{m} / \mathrm{z}=229.0401$.
Anal. Calcd. For $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{Cl}$: C, 62.76; H, 3.51; N, 18.30. Found: C, 62.32; H, 3.60; N, 17.95.
5-Nitro-2-pyridin-3-yl-1 H -benzimidazole ($\mathbf{3 d}$).
This compound was obtained as yellow powder, yield 65%, $\mathrm{mp} 273-274^{\circ}$; ir (potassium bromide): $3110(\mathrm{CH}), 1520,1340$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}_{6}\right): \delta 9.37$ (d, 1H, C2'-H), 8.75 (dd, 1H,

C6'-H), 8.52 (m, 2H, C4-H, C4'-H), 8.16 (d, 1H, C6-H), 7.81 (d, 1H, C7-H), 7.66 (dd, 1H, C5'-H); ${ }^{13} \mathrm{C} \mathrm{nmr}$ (DMSO-d ${ }_{6}$): $\delta 154.2$ (C-2), 151.5 (C-6'), 148.1 (C-2'), 143.7, 140.1 (C-8, C-9), 142.8 (C-5), 134.5 (C-4'), 125.7 (C-3'), 124.3 (C-5'), 118.1, 115.0, 112.6 (arom. C); $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{2}$ (240.0647), MS: m/z $=240.0645$.

Anal. Calcd. For $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 60.00; $\mathrm{H}, 3.36 ; \mathrm{N}, 23.32$. Found: C, 59.88; H, 3.36; N, 23.15.

General Procedure for Preparation of Pyridium Salts (4a-d).

To a stirred solution of ($\mathbf{3 a - d}$) $(5.0 \mathrm{mmol})$ in acetone (30 ml) was added a solution of iodomethane (50.0 mmol) in acetone (10 $\mathrm{ml})$. The mixture was stirred at room temperature for 20 hours. The precipitate was collected by filtration, the filter cake washed with acetone, then dried under reduced pressure to give $\mathbf{4 a}-\mathbf{d}$.
2-(1-Methyl)pyridinium-3-yl-1 H -benzimidazole Iodide (4a).
This compound was obtained as yellow powder, yield 87%, $\mathrm{mp} 221-223^{\circ}$; ir (potassium bromide): $3140(\mathrm{CH}), 1480,1310$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}_{\mathrm{d}}^{6}\right.$): $\delta 9.74$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{C}^{\prime}-\mathrm{H}$), 9.12, 9.06 (2 x d, 2H, C6'-H, C4'-H), 8.32 (dd, 1H, C5'-H), 7.74 (m, C4-H, C7H), 7.34 (m, C5-H, C6-H), 4.49 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{N}^{+} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C} \mathrm{nmr}$ (DMSO- d_{6}): $\delta 145.5(\mathrm{C}-2), 145.4\left(\mathrm{C}-6^{\prime}\right), 144.0(\mathrm{C}-2$), 140.9 (C$\left.4^{\prime}\right), 130.0$ (C-5'), 128.3 (C-3'), 123.8 (arom. C), $48.7\left(\mathrm{~N}^{+} \mathrm{CH}_{3}\right)$; $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{I}\left(-\mathrm{CH}_{3} \mathrm{I}\right)(195.0796), \mathrm{MS}: \mathrm{m} / \mathrm{z}=195.0790$.

Anal. Calcd. For $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{I} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 45.11 ; \mathrm{H}, 3.79$; N , 12.14. Found: C, $45.51 ; \mathrm{H}, 3.55 ; \mathrm{N}, 12.02$.

5-Methoxy-2-(1-methyl)pyridinium-3-yl-1 H -benzimidazole Iodide (4b).

This compound was obtained as yellow powder, yield 75%, $\mathrm{mp} 183-186^{\circ}$; ir (potassium bromide): $3110(\mathrm{CH}), 1630,1270$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO-d d_{6}): $\delta 9.65\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 2{ }^{\prime}-\mathrm{H}\right), 9.03(2 \mathrm{xd}, 2 \mathrm{H}$, C6'-H, C4'-H), 8.29 (dd, 1H, C5'-H), 7.65-6.93 (m, 3H, C4-H, $\mathrm{C} 6-\mathrm{H}, \mathrm{C} 7-\mathrm{H}), 4.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}^{+} \mathrm{CH}_{3}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}$ (DMSO-d d_{6}): $\delta 158.9$ (C-5), 145.0 (C-2), 144.1 (C-6'), 143.6 (C$\left.2^{\prime}\right), 140.3$ (C-4'), 130.1 (C-5'), 128.2 (C-3'), 113.4 (arom. C), 55.8 $\left(\mathrm{OCH}_{3}\right), 48.7\left(\mathrm{~N}^{+} \mathrm{CH}_{3}\right) ; \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{OI}\left(-\mathrm{CH}_{3} \mathrm{I}\right)$ (225.0902), MS: $\mathrm{m} / \mathrm{z}=225.0902$.

Anal. Calcd. For $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{OI} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 43.65$; $\mathrm{H}, 4.19$; N , 10.91. Found: C, $44.03 ;$ H, 4.15 ; N, 10.89 .

5-Chloro-2-(1-methyl)pyridinium-3-yl-1 H -benzimidazole Iodide (4c).

This compound was obtained as yellow powder, yield 74%, $\mathrm{mp} 236-238^{\circ}$; ir (potassium bromide): $3090(\mathrm{CH}), 1660,1490$, $1320 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{nmr}\left(\mathrm{DMSO}_{\mathrm{d}}\right.$): $\delta 9.65$ (s, 1H, C2'-H), 9.08 (br d, 2H, C6'-H, C4'-H), 8.40 (dd, 1H, C5'-H), 7.84 (d, 1H, C4-H, J $=1.6 \mathrm{~Hz}), 7.79(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C} 7-\mathrm{H}, J=8.6 \mathrm{~Hz}), 7.40(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}, J$ $=1.6 \mathrm{~Hz}, 8.6 \mathrm{~Hz}), 4.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}^{+} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): \delta$ 146.9 (C-2), 145.8 (C-6'), 144.2 (C-2'), 141.1 (C-4'), 129.6 (C-5), 128.2 (C-5'), 128.0 (C-3'), 124.1 (arom. C), $48.7\left(\mathrm{~N}^{+} \mathrm{CH}_{3}\right)$.

Anal. Calcd. For $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{ClIN}_{3}$: C, 42.02; H, 2.98; N, 11.31. Found: C, 41.95; H, 3.10; N, 11.39.
5-Nitro-2-(1-methyl)pyridinium-3-yl-1 H -benzimidazole Iodide (4d).

This compound was obtained as yellow powder, yield 92%, $\mathrm{mp} 265-266^{\circ}$; ir (potassium bromide): $3060(\mathrm{CH}), 1530,1345$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}_{\mathrm{d}}^{6}\right.$): $\delta 9.79$ (s, $1 \mathrm{H}, \mathrm{C}^{\prime}-\mathrm{H}$), 9.18 (2 xd , $\left.2 \mathrm{H}, \mathrm{C} 6^{\prime}-\mathrm{H}, \mathrm{C} 4^{\prime}-\mathrm{H}\right), 8.58$ (d, 1H, C4-H, $J=2.0 \mathrm{~Hz}$), 8.42 (dd, $1 \mathrm{H}, \mathrm{C} 5 '-\mathrm{H}, J=6.2 \mathrm{~Hz}, 8.1 \mathrm{~Hz}), 8.22(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}, J=2.0 \mathrm{~Hz}$,
$8.9 \mathrm{~Hz}), 7.92(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C} 7-\mathrm{H}, J=8.9 \mathrm{~Hz}), 4.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}^{+} \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 150.0(\mathrm{C}-2), 146.5$ (C-6'), 144.6 (C-5), 143.7 (C-2'), 141.7 (C-4'), 129.0 (C-5'), 128.3 (C-3'), 119.2 (arom. C), $48.8\left(\mathrm{~N}^{+} \mathrm{CH}_{3}\right) ; \mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{IO}_{2}\left(-\mathrm{CH}_{3} \mathrm{I}\right)(240.0647)$, MS: $\mathrm{m} / \mathrm{z}=240.0646$.
Anal. Calcd. For $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{IO}_{2}$: C, 40.86; H, 2.90; $\mathrm{N}, 14.66$. Found: C, 40.97; H, 2.94; N, 14.51.

General Procedure for Preparation of 1-Methyl-1,2,5,6-tetrahy-dropyridin-3-ylbenzimidazoles (5a-d).
To a cooled $\left(-20{ }^{\circ} \mathrm{C}\right)$ and stirred suspension of (4a-d) (4.0 mmol) in methanol (40 ml) was added portion-wise sodium borohydride (4.5 mmol). After stirring for 2 hours at room temperature, the solvent was evaporated. The residue was dissolved in ethyl acetate and washed with aqueous NaHCO_{3} solution. The organic layer was washed with brine and dried over anhydrous MgSO_{4}. The solvent was removed in vacuo and the residue was purified by flash column chromatography on silica gel (methylene chloride:methanol) to give the title compounds 5a-d.
2-(1-Methyl-1,2,5,6-tetrahydropyridin-3-yl)-1 H-benzimidazole (5a).

This compound was obtained as yellow powder, yield 95%, mp 204-206 ${ }^{\circ}$; ir (potassium bromide): $3090(\mathrm{CH}), 1660,1455$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right): \delta 7.27-7.18(\mathrm{~m}, 4 \mathrm{H}$, arom. H$), 6.59(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{C} 4{ }^{\prime}-\mathrm{H}\right), 3.59$ (d, 2H, C2'-H, J = 1.9 Hz), 2.60 (m, 2H, C6'-H), $2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 5{ }^{\prime}-\mathrm{H}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right): \delta$ 151.6 (C-2), 128.0 (C-3'), 127.8 (C-4'), 123.1 (arom. C), 54.7 $\left(\mathrm{C}-2^{\prime}\right), 51.6(\mathrm{C}-6 '), 46.1\left(\mathrm{NCH}_{3}\right), 26.7\left(\mathrm{C}-5^{\prime}\right) ; \mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3}$ (213.1266), MS: $\mathrm{m} / \mathrm{z}=213.1272$.

Anal. Calcd. For $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \cdot\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$: C, 56.07 ; $\mathrm{H}, 5.96$; $\mathrm{N}, 13.08$. Found: C, 55.66 ; H, 5.63 ; N, 12.86.

5-Methoxy-2-(1-methyl-1,2,5,6-tetrahydropyridin-3-yl)-1H-benzimidazole (5b).

This compound was obtained as yellow powder, yield 45%, $\mathrm{mp} 143-145^{\circ}$; ir (potassium bromide): $3390(\mathrm{CH}), 1690,1620$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 7.23(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C} 7-\mathrm{H}, J=8.6 \mathrm{~Hz}), 6.83$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}$), 6.66 (d, 1H, C6-H, $J=8.6 \mathrm{~Hz}), 6.52(\mathrm{~m}, 1 \mathrm{H}$, C 4 '-H), 3.63 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.32 (br s, $2 \mathrm{H}, \mathrm{C} 2{ }^{\prime}-\mathrm{H}$), 2.47 (br s, 2H, C6'-H), 2.31 (br s, 5H, $\left.\mathrm{NCH}_{3}, \mathrm{C}^{\prime}-\mathrm{H}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{CD}_{3} \mathrm{OD}\right): ~ \delta$ 158.5 (C-5), 152.0 (C-2), 128.5 (C-3'), 128.1 (C-4'), 113.7 (arom. C), $56.4\left(\mathrm{OCH}_{3}\right), 54.9(\mathrm{C}-2 '), 52.3(\mathrm{C}-6 '), 46.0\left(\mathrm{NCH}_{3}\right), 27.2$ (C-5'); $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}(243.1372), \mathrm{MS}: \mathrm{m} / \mathrm{z}=243.1379$.
Anal. Calcd. For $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O} \cdot\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2} \bullet 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 52.03 ; \mathrm{H}$, 6.28; N, 11.38. Found: C, 51.92; H, 6.23; N, 11.03.

5-Chloro-2-(1-methyl-1,2,5,6-tetrahydropyridin-3-yl)-1H-benzimidazole (5c).

This compound was obtained as yellow powder, yield 67%, $\mathrm{mp} 174-175^{\circ}$; ir (potassium bromide): $2920(\mathrm{CH}), 1670,1430$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 7.33(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}, J=1.9 \mathrm{~Hz}), 7.30$ (d, 1H, C7-H, $J=8.6 \mathrm{~Hz}$), 7.02 (dd, 1H, C6-H, $J=1.9 \mathrm{~Hz}, 8.6$ Hz), 6.62 (m, 1H, C4'-H), 3.38 (m, 2H, C2'-H), 2.56 (m, 2H, C6'$\mathrm{H}), 2.37$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}$), 2.37 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{C} 5 \mathrm{C}^{-} \mathrm{H}$); ${ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{CD}_{3} \mathrm{OD}\right)$: $\delta 153.7$ (C-2), 130.2 (C-3'), 129.4 (C-5), 127.6 (C-4'), 124.5 (arom. C), 54.8 (C-2'), 52.2 (C-6'), $45.9\left(\mathrm{NCH}_{3}\right), 27.1$ (C-5'); $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{Cl}(247.0876), \mathrm{MS}: \mathrm{m} / \mathrm{z}=247.0870$.
Anal. Calcd. For $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{Cl} \bullet\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2} \bullet 1 / 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 51.96 ; \mathrm{H}$, 4.94; N, 12.12. Found: C, $52.15 ;$ H, $5.10 ;$ N, 12.02 .

5-Nitro-2-(1-methyl-1,2,5,6-tetrahydropyridin-3-yl)-1H-benzimidazole (5d).

This compound was obtained as brown powder, yield 47%, $\mathrm{mp} 130-131^{\circ}$; ir (potassium bromide): $2940(\mathrm{CH}), 1650,1330$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 8.37(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}, J=2.0 \mathrm{~Hz}), 8.12$ (dd, 1H, C6-H, $J=2.0 \mathrm{~Hz}, 8.9 \mathrm{~Hz}$), 7.58 (d, 1H, C7-H, $J=8.9$ $\mathrm{Hz}), 6.89\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 4{ }^{\prime}-\mathrm{H}\right), 3.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 2{ }^{\prime}-\mathrm{H}\right), 2.78\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 6{ }^{\prime}-\right.$ $\mathrm{H}), 2.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 5 \mathrm{C}^{\prime}-\mathrm{H}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{CD}_{3} \mathrm{OD}\right)$: $\delta 156.6$ (C-2), 145.1 (C-5), 134.2 (C-3'), 127.4 (C-4'), 119.8 (arom. C), 54.6 (C-2'), 52.1 (C-6'), $45.8\left(\mathrm{NCH}_{3}\right), 27.1$ (C-5'); $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}(258.1117)$, MS: $\mathrm{m} / \mathrm{z}=258.1112$.
Anal. Calcd. For $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2} \cdot\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 49.18 ; \mathrm{H}$, 4.95; N, 15.29. Found: C, 49.58; H, 5.09; N, 15.64.

General Procedure for Preparation of 1-Methyl-2-pyridinylbenzimidazoles ($\mathbf{6 a - d}$).

To a stirred suspension of potassium hydroxide (10 mmol) in 50 ml acetone was added $\mathbf{3 a - d}(2 \mathrm{mmol})$ and added methyl iodide (6 mmol). After stirring at room temperature for 2 hours, the reaction mixture was poured into toluene. The separated organic layer was washed with brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified or isomers separated by flash column chromatography on silica gel to give the title compounds 6a-d.

1-Methyl-2-pyridin-3-yl-1 H -benzimidazole ($\mathbf{6 a}$).

This compound was obtained by flash column chromatography on silica gel (methylene chloride:methanol) as pale yellow powder, yield $93 \%, \mathrm{mp} \mathrm{143-145}^{\circ}$; ir (potassium bromide): 3160 (CH), 1730, $1580 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right): \delta 9.05\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C} 2^{\prime}-\mathrm{H}\right)$, 8.73 (dd, 1H, C6'-H), 8.11 (m, 1H, C4'-H), 7.83-7.30 (m, 4H, C4H, C5-H, C6-H, C7-H), 7.46 (m, 1H, C5'-H), $3.87\left(\mathrm{NCH}_{3}\right) ;{ }^{13} \mathrm{C}$ $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right): \delta 150.6(\mathrm{C}-2), 150.5\left(\mathrm{C}-6\right.$ '), $149.8\left(\mathrm{C}-2{ }^{\prime}\right), 142.9$, 136.5 (C-8, C-9), 136.8 (C-4'), 126.5 (C-3'), 123.6 (C-5'), 123.3, $122.8, \quad 120.0, \quad 109.8$ (arom. C), $31.7 \quad\left(\mathrm{NCH}_{3}\right)$; $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3}(209.0953)$, MS: $\mathrm{m} / \mathrm{z}=209.0952$.

Anal. Calcd. For $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3}$: C, 74.62; H, 5.30; N, 20.08. Found: C, 74.71; H, 5.28; N, 20.20.
5-Methoxy-1-methyl-2-pyridin-3-yl-1 H -benzimidazole ($\mathbf{6 A b}$).
The mixture of $5-/ 6$-isomers (1:1) was separated by flash column chromatography on silica gel (n-hexane:acetone) to give $\mathbf{6 A b}$ and $6 \mathbf{B b}$. Compound $\mathbf{6 A b}$ was obtained as yellow powder, yield $40 \%, \mathrm{mp} \mathrm{118}{ }^{\circ}$; ir (potassium bromide): $3050(\mathrm{CH}), 1630$, $1570 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right): \delta 9.01$ (br d, $\left.1 \mathrm{H}, \mathrm{C} 2{ }^{\prime}-\mathrm{H}\right), 8.74$ (dd, $1 \mathrm{H}, \mathrm{C} 6$ '-H), 8.12 (dt, 1H, C4'-H), 7.48 (br dd, 1H, C5'-H), 7.30 (m, 2H, C4-H, C7-H), 7.01 (dd, 1H, C6-H), 3.89 (s, 3H, OCH ${ }_{3}$), $3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right): \delta 156.5(\mathrm{C}-5), 150.7(\mathrm{C}-$ 2), 150.4 (C-6'), 149.7 (C-2'), 143.7, 131.2 (C-8, C-9), 136.7 (C$\left.4^{\prime}\right), 126.6$ (C-3'), 123.5 (C-5'), 113.5, 110.1, 101.8 (arom. C), 55.7 $\left(\mathrm{OCH}_{3}\right), 31.7\left(\mathrm{NCH}_{3}\right)$.

Anal. Calcd. For $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 70.28 ; \mathrm{H}, 5.48 ; \mathrm{N}, 17.56$. Found: C, 70.07; H, 5.47; N, 17.74.
Crystal Data and Structure Refinement for $\mathbf{6 A b}$.
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system, space group
Unit cell dimensions

```
C
239.27
297(2) K
0.71073 Å
Triclinic, P-1
a=6.7973(8) \AA \alpha=83.694(14).}
```

Volume, Z
Calculated density
Absorption coefficient
F(000)
Crystal size
θ range for data collection Limiting indices Reflections collected Independent reflections Refinement method Data/restraints/parameters Goodness-of-fit on F^{2} Final R indices [I>2 $\sigma(\mathrm{I})$] R indices (all data)
Largest diff. peak and hole
$b=7.4976(12) \AA \beta=80.852(7)^{\circ}$.
$c=12.2434(17) \AA \gamma=89.746(10)^{\circ}$.
612.25(15) $\AA^{3}, 2$
$1.298 \mathrm{Mg} / \mathrm{m}^{3}$
$0.085 \mathrm{~mm}^{-1}$
252
$0.3 \times 0.5 \times 0.4 \mathrm{~mm}$
2.73 to 26.00°
$-8 \leq h \leq 1,-9 \leq k \leq 9,-15 \leq l \leq 15$
3042
$2406\left[\mathrm{R}_{\mathrm{int}}=0.0229\right]$
Full-matrix least-squares on F^{2}
2406/0/213
1.050
$R 1=0.0717, w R 2=0.1646$
$\mathrm{R} 1=0.0787, \mathrm{wR} 2=0.1710$
0.690 and -0.311 e. A^{-3}

6-Methoxy-1-methyl-2-pyridin-3-yl-1 H -benzimidazole ($\mathbf{6 B b}$).
This compound was obtained as yellow powder, yield 42%, $\mathrm{mp} 109-110^{\circ}$; ir (potassium bromide): $2980(\mathrm{CH}), 1600,1450$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right): \delta 9.00\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{C} 2^{\prime}-\mathrm{H}\right), 8.73(\mathrm{dd}, 1 \mathrm{H}$, C6'-H), 8.12 (dt, 1H, C4'-H), 7.72 (d, 1H, C4-H), 7.47 (m, 1H, C5'-H), 6.99 (dd, 1H, C5-H), 6.85 (d, 1H, C7-H), 3.92 (s, 3H, $\left.\mathrm{OCH}_{3}\right), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right): \delta 157.0(\mathrm{C}-6)$, 150.3 (C-6'), 149.8 (C-2), 149.6 (C-2'), 137.5, 137.2 (C-8, C-9), 136.6 (C-4'), 126.6 (C-3'), 123.5 (C-5'), 120.5, 112.1, 93.1 (arom. C), $55.8\left(\mathrm{OCH}_{3}\right), 31.7\left(\mathrm{NCH}_{3}\right) ; \mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}$ (239.1058), MS: $\mathrm{m} / \mathrm{z}=239.1058$.

Anal. Calcd. For $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 70.28 ; \mathrm{H}, 5.48 ; \mathrm{N}, 17.56$. Found: C, 69.90; H, 5.43; N, 17.12.

5-Chloro-1-methyl-2-pyridin-3-yl-1 H -benzimidazole ($\mathbf{6 A c}$).

The mixture 5-/6-isomers (1:1) was separated by flash column chromatography on silica gel (n-hexane:acetone) to give 6Ac and 6Bc. Compound 6Ac was obtained as yellow powder, yield 35%, $\mathrm{mp} 142-143^{\circ}$; ir (potassium bromide): $3050(\mathrm{CH}), 1475,1420$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right): \delta 9.00\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C} 2{ }^{\prime}-\mathrm{H}, J=1.9 \mathrm{~Hz}\right), 8.77$ (dd, 1H, C6'-H, $J=1.6 \mathrm{~Hz}, 5.0 \mathrm{~Hz}$), 8.12 (dt, 1H, C4'-H, $J=1.9$ $\mathrm{Hz}, 7.8 \mathrm{~Hz}$), 7.80 (s, 1H, C4-H), 7.49 (dd, 1H, C5'-H, $J=5.0 \mathrm{~Hz}$, $7.8 \mathrm{~Hz}), 7.33$ (s, 2H, C6-H, C7-H), $3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}$ $\left(\mathrm{CDCl}_{3}\right): \delta 151.8$ (C-2), 150.9 (C-6'), 149.7 (C-2'), 143.7, 135.2 (C-8, C-9), 136.9 (C-4'), 128.4 (C-5), 126.1 (C-3'), 123.6 (C-5'), 123.7, 119.7, 110.6 (arom. C), $31.9\left(\mathrm{NCH}_{3}\right)$.

Anal. Calcd. For $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{Cl}$: C, 64.07; H, 4.14; N, 17.24. Found: C, 63.72; H, 4.14; N, 17.10.

6-Chloro-1-methyl-2-pyridin-3-yl-1H-benzimidazole ($\mathbf{6 B c}$).
This compound was obtained as yellow powder, yield 33%, $\mathrm{mp} 146-147^{\circ}$; ir (potassium bromide): 2925 (CH), 1465, 1415 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right): \delta 9.01\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C} 2{ }^{\prime}-\mathrm{H}, J=1.9 \mathrm{~Hz}\right), 8.76$ (dd, 1H, C6'-H, J=1.2 Hz, 5.0 Hz), $8.12\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 4 \mathrm{'}^{-H}\right), 7.73(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}, J=8.4 \mathrm{~Hz}$), 7.49 (dd, $1 \mathrm{H}, \mathrm{C} 5^{\prime}-\mathrm{H}, J=5.0 \mathrm{~Hz}, 7.8 \mathrm{~Hz}$), $7.40(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C} 7-\mathrm{H}, J=1.6 \mathrm{~Hz}), 7.29(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}, J=1.6 \mathrm{~Hz}$, $8.4 \mathrm{~Hz}), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right): \delta 151.4(\mathrm{C}-2)$, 150.8 (C-6'), 149.7 (C-2'), 141.5, 137.1 (C-8, C-9), 136.8 (C-4'), 129.0 (C-6), 126.0 (C-3'), 123.6 (C-5'), 123.4, 120.8, 109.9 (arom. C), $31.8\left(\mathrm{NCH}_{3}\right)$.
Anal. Calcd. For $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{Cl}$: C, 64.07; H, 4.14; N, 17.24. Found: C, 63.78; H, 4.16; N, 17.41.

5/6-Nitro-1-methyl-2-pyridin-3-yl-1 H-benzimidazole ($\mathbf{6 A B d}$).
The title compound was obtained as a mixture of 5-/6-isomers as dark yellow powder, yield 90%, mp 232-234 ${ }^{\circ}$; ir (potassium bromide): $2920(\mathrm{CH}), 1505,1350 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO- d_{6}): δ 9.10 (br s, 2H, C2'-H), 8.80 (br d, 2H, C6'-H, J=4.8 Hz), 8.34 (br d, $2 \mathrm{H}, \mathrm{C} 4 '^{\prime}-\mathrm{H}, J=7.8 \mathrm{~Hz}$), 7.66 (dd, 2H, C5'-H, $J=4.8 \mathrm{~Hz}, 7.8$ Hz), 8.72, 8.61, 8.24, 8.17, 7.90 (m, 6H, arom. H), 4.04, 3.99 (s, $\left.6 \mathrm{H}, \mathrm{NCH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{DMSO}_{6}\right): \delta 155.8(\mathrm{C}-2), 151.5(\mathrm{C}-6$ '), 150.0 (C-2'), 143.2, 136.3 (C-8, C-9), 137.3 (C-4'), 125.7, 124.1, 119.8, 118.1, 111.8, 108.4 (C-3', C-5', arom. C), $32.6\left(\mathrm{NCH}_{3}\right)$; $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}(254.0804)$, MS: $\mathrm{m} / \mathrm{z}=254.0808$.

Anal. Calcd. For $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 61.41; H, 3.96; N, 22.04. Found: C, 61.25; H, 3.99; N, 21.80.
General Procedure for Preparation of (7a-d).
The compounds (7a-d) were prepared following the procedure described for pyridinium salts ($\mathbf{4 a - d}$), and were used for the next reaction without further purification.
1-Methyl-2-(1-methyl)pyridinium-3-yl-1H-benzimidazole Iodide (7a).

This compound was obtained as yellow powder, yield 76%, $\mathrm{mp} 215-217^{\circ}$; ir (potassium bromide): $3000(\mathrm{CH}), 1560,1450$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 9.45$ (s, 1H, C2'-H), 9.09 (d, 1H, C6'H), 9.01 (d, 1H, C4'-H), 8.30 (br t, 1H, C5'-H), 7.76, 7.67 (2 xd , $2 \mathrm{H}, \mathrm{C} 4-\mathrm{H}, \mathrm{C} 7-\mathrm{H}), 7.41$ (m, 2H, C5-H, C6-H), 4.57 (s, 3H, $\mathrm{N}^{+} \mathrm{CH}_{3}$), 4.06 (s, $3 \mathrm{H}, \mathrm{N}_{1}-\mathrm{CH}_{3}$); ${ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 148.1$, 147.5, 147.4, 146.5 (C-2, C-2', C-5', C-6'), 143.8, 138.4 (C-9, C8), 132.3, 129.7 (C-3', C-4'), 126.0, 125.1, 120.8, 112.4 (arom. C), $50.2\left(\mathrm{~N}^{+} \mathrm{CH}_{3}\right), 32.9\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}_{1}-\mathrm{CH}_{3}\right) ; \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{I}(-$ $\left.\mathrm{CH}_{3} \mathrm{I}\right)(209.0953), \mathrm{MS}: \mathrm{m} / \mathrm{z}=209.0943$.

Anal. Calcd. For $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{I} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 46.68 ; \mathrm{H}, 4.20 ; \mathrm{N}$, 11.67. Found: C, $46.97 ; \mathrm{H}, 4.00 ; \mathrm{N}, 11.56$.

5-Methoxy-1-methyl-2-(1-methyl)pyridinium-3-yl-1 H -benzimidazole Iodide (7Ab).

This compound was obtained as yellow powder, yield quantitative, $\mathrm{mp} 227-229^{\circ}$; ir (potassium bromide): $3030(\mathrm{CH}), 1620$, $1500 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}_{6}\right): \delta 9.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 2 '-\mathrm{H}), 9.13(\mathrm{~d}$, 1H, C6'-H), 9.03 (d, 1H, C4'-H), 8.32 (dd, 1H, C5'-H), 7.66 (d, $1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}), 7.26$ (d, 1H, C7-H), 7.05 (dd, 1H, C6-H), 4.50 (s, 3H, $\mathrm{N}^{+} \mathrm{CH}_{3}$), $4.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}_{1}-\mathrm{CH}_{3}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}$ (DMSO-d ${ }_{6}$): $\delta 156.4$ (C-5), 146.7 (C-6'), 145.6 (C-2'), 144.2 (C4'), 143.3, 131.7 (C-8, C-9), 130.1 (C-3'), 127.9 (C-5'), 114.2, 111.9, 94.1 (arom. C), $55.8\left(\mathrm{OCH}_{3}\right), 48.6\left(\mathrm{~N}^{+} \mathrm{CH}_{3}\right), 32.2\left(\mathrm{~N}_{1-}{ }^{-}\right.$ $\left.\mathrm{CH}_{3}\right) ; \mathrm{C}_{15} \mathrm{H}_{16} \mathrm{IN}_{3} \mathrm{O}\left(-\mathrm{CH}_{3} \mathrm{I}\right)(239.1057)$, MS: $\mathrm{m} / \mathrm{z}=239.1057$.

Anal. Calcd. For $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{IN}_{3} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 45.13 ; \mathrm{H}, 4.54$; N , 10.53. Found: C, $44.79 ; \mathrm{H}, 4.11 ; \mathrm{N}, 10.16$.

6-Methoxy-1-methyl-2-(1-methyl)pyridinium-3-yl-1 H -benzimidazole Iodide (7Bb).

This compound was obtained as yellow powder, yield quantitative, $\mathrm{mp} 225-226^{\circ}$; ir (potassium bromide): 3050 (CH), 1620, 1490 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 9.54\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}^{\prime}-\mathrm{H}\right), 9.11\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C} 6{ }^{\prime}-\right.$ H), 9.03 (d, 1H, C4'-H), 8.31 (dd, 1H, C5'-H), 7.65 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H})$, 7.31 (d, 1H, C7-H), 6.95 (dd, $1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}$), 4.50 (s, $3 \mathrm{H}, \mathrm{N}^{+} \mathrm{CH}_{3}$), $4.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}_{1}-\mathrm{CH}_{3}\right), 3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): \delta$ 157.2 (C-6), 145.8 (C-6'), 145.4 (C-2), 145.3 (C-2'), 144.0 (C-4'), 137.9, 136.9 (C-8, C-9), 130.2 (C-5'), 127.9 (C-3'), 120.4, 113.3, 94.1 (arom. C), $56.0\left(\mathrm{OCH}_{3}\right), 48.6\left(\mathrm{~N}^{+} \mathrm{CH}_{3}\right), 32.2\left(\mathrm{~N}_{1}-\mathrm{CH}_{3}\right)$; $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{IN} \mathrm{N}_{3} \mathrm{O}\left(-\mathrm{CH}_{3} \mathrm{I}\right)(239.1057), \mathrm{MS}: \mathrm{m} / \mathrm{z}=239.1055$.

Anal. Calcd. For $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{IN}_{3} \mathrm{O} \cdot 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 43.18 ; \mathrm{H}, 4.83$; N , 10.07. Found: C, 43.13; H, 4.43; N, 9.73.

5-Chloro-1-methyl-2-(1-methyl)pyridinium-3-yl-1 H -benzimidazole Iodide (7Ac).

This compound was obtained as yellow powder, yield 96%, mp 243-244 ${ }^{\circ}$; ir (potassium bromide): $3000(\mathrm{CH}), 1640,1470$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}_{6}\right): \delta 9.58$ (s, 1H, C2'-H), 9.17 (d, 1H, C6'-H), 9.05 (d, 1H, C4'-H), 8.35 (br t, 1H, C5'-H), 7.86 ($\mathrm{s}, 1 \mathrm{H}$, C4-H), 7.83 (d, 1H, C7-H), 7.45 (d, 1H, C6-H), 4.51 (s, 3H, $\mathrm{N}^{+} \mathrm{CH}_{3}$), 4.04 (s, $3 \mathrm{H}, \mathrm{N}_{1}-\mathrm{CH}_{3}$); ${ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{DMSO}_{6}\right): \delta 148.4$ (C-2), 146.1 (C-6'), 145.9 (C-2'), 144.7 (C-4'), 143.8, 135.2 (C-9, C-8), 129.7 (C-3'), 128.0 (C-5), 127.5 (C-5'), 124.2, 119.1, 113.1 (arom. C), $48.7\left(\mathrm{~N}^{+} \mathrm{CH}_{3}\right), 32.4\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}_{1}-\mathrm{CH}_{3}\right) ; \mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{CII}-$ $\left(-\mathrm{CH}_{3} \mathrm{I}\right)(243.0563), \mathrm{MS}: \mathrm{m} / \mathrm{z}=243.0558$.
Anal. Calcd. For $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{ClI} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 42.61 ; \mathrm{H}, 3.58 ; \mathrm{N}$, 10.65. Found: C, 42.79 ; H, 3.35 ; N, 10.54 .

6-Chloro-1-methyl-2-(1-methyl)pyridinium-3-yl-1 H -benzimidazole Iodide (7Bc).
This compound was obtained as yellow powder, yield 86%, $\mathrm{mp} 236-237^{\circ}$; ir (potassium bromide): $3050(\mathrm{CH}), 1650,1450$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}_{6}\right): \delta 9.58\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}^{\prime}-\mathrm{H}\right), 9.17(\mathrm{~d}, 1 \mathrm{H}$, C6'-H), 9.05 (d, 1H, C4'-H), 8.36 (br t, 1H, C5'-H), 7.97 (s, 1H, C7-H), 7.80 (d, 1H, C4-H), 7.36 (d, 1H, C5-H), 4.50 (s, 3H, $\left.\mathrm{N}^{+} \mathrm{CH}_{3}\right), 4.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}_{1}-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{DMSO}_{6} \mathrm{~d}_{6}\right): \delta 148.2$ (C-2), 146.2 (C-6'), 146.1 (C-2'), 144.7 (C-4'), 141.3, 137.8 (C-9, C-8), 129.6 (C-3'), 128.6 (C-5'), 128.2 (C-6), 123.7, 121.3, 111.8 (arom. C), $48.8\left(\mathrm{~N}^{+} \mathrm{CH}_{3}\right), 32.5\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}_{1}-\mathrm{CH}_{3}\right) ; \mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{ClI}-$ $\left(-\mathrm{CH}_{3} \mathrm{I}\right)(243.0563), \mathrm{MS}: \mathrm{m} / \mathrm{z}=243.0564$.
Anal. Calcd. For $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{ClI} \bullet 1 / 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 42.61$; H, 3.58; N, 10.65. Found: C, $42.70 ; \mathrm{H}, 3.35 ; \mathrm{N}, 10.44$.

1-Methyl-5/6-nitro-2-(1-methyl)pyridinium-3-yl-1H-benzimidazole Iodide (7ABd).

This compound was obtained as yellow powder, yield 76%, $\mathrm{mp} 258-261^{\circ}$; ir (potassium bromide): $3150(\mathrm{CH}), 1520,1490$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO-d d_{6}): $\delta 9.63,9.62$ ($2 \mathrm{xs}, 2 \mathrm{H}, \mathrm{C} 2{ }^{\prime}-\mathrm{H}$), 9.23 , 9.21 (2xbr d, 2H, C6'-H), 9.09 (m, 2H, C4'-H), 8.83, 8.66 (2 xd , $2 \mathrm{H}, \mathrm{C} 4-\mathrm{H} / \mathrm{C} 7-\mathrm{H}$), 8.39 (m, 2H, C5'-H), 8.31, 8.23 ($2 \mathrm{xdd}, 2 \mathrm{H}, \mathrm{C} 5-$ H/C6-H), 8.04, 7.99 ($2 \mathrm{xd}, 2 \mathrm{H}, \mathrm{C} 7-\mathrm{H} / \mathrm{C} 4-\mathrm{H}$), 4.52 (s, 6 H , $\left.\mathrm{N}+\mathrm{CH}_{3}\right), 4.15,4.10\left(2 \mathrm{xs}, 6 \mathrm{H}, \mathrm{N}_{1}-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): \delta$ 151.9, 151.1 (C-2), 146.8, 146.7, 146.4, 146.3, 145.2, 145.1, 143.8, 143.7, 142.3, 141.4, 141.0, 136.3 (C-2', C-4', C-5, C-5', C6, C-6', C-8, C-9), 129.1, 128.1 (C-3', C-5), 120.2, 119.2, 118.4, 115.9, 112.4, 108.9 (arom. C), $48.7\left(\mathrm{~N}^{+} \mathrm{CH}_{3}\right), 32.7$ (s, $3 \mathrm{H}, \mathrm{N}_{1}{ }^{-}$ $\left.\mathrm{CH}_{3}\right) ; \mathrm{C}_{14} \mathrm{H}_{13} \mathrm{IN}_{4} \mathrm{O}_{2}\left(-\mathrm{CH}_{3} \mathrm{I}\right)(254.0804)$, MS: $\mathrm{m} / \mathrm{z}=254.0809$.
Anal. Calcd. For $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{IN}_{4} \mathrm{O}_{2} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 41.50 ; \mathrm{H}, 3.48 ; \mathrm{N}$, 13.83. Found: C, $41.86 ; \mathrm{H}, 3.31 ; \mathrm{N}, 13.62$.

General Procedure for Preparation of ($\mathbf{8 a - d}$).
The reduction of compounds (7a-d) was prepared following the procedure described for 1-methyl-1,2,5,6-tetrahydropyridin3 -ylbenzimidazoles (5a-d).
1-Methyl-2-(1-methyl-1,2,5,6-tetrahydropyridin-3-yl)-1 H -benzimidazole (8a).
This compound was obtained as yellow powder, yield 63%, $\mathrm{mp} 84-85^{\circ}$; ir (potassium bromide): $2950(\mathrm{CH}), 1645,1450 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 7.62-7.22(\mathrm{~m}, 4 \mathrm{H}$, arom. H$), 6.38(\mathrm{~m}, 1 \mathrm{H}$, C4'-H), 3.84 (s, 3H, N $\mathrm{N}_{1}-\mathrm{CH}_{3}$), 3.46 (br s, 2H, C2'-H), 2.75 (t, 2H,

C6'-H), 2.53 (m, 2H, C5'-H), $2.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}$ ($\mathrm{CD}_{3} \mathrm{OD}$): $\delta 153.5$ (C-2), 143.0, 137.6 (C-8, C-9), 133.0 (C-4'), 127.5 (C-3'), 124.5, 124.0, 119.7, 111.5 (arom. C), 56.2 (C-2'), $52.1(\mathrm{C}-6 '), 45.8\left(\mathrm{NCH}_{3}\right), 32.4\left(\mathrm{~N}_{1}-\mathrm{CH}_{3}\right), 27.0(\mathrm{C}-5 ')$; $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{3}(227.1422), \mathrm{MS}: \mathrm{m} / \mathrm{z}=227.1427$.

Anal. Calcd. For $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{3} \cdot\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 58.89 ; \mathrm{H}$, 6.18; N, 12.88. Found: C, $58.61 ;$ H, 5.92 ; N, 12.56.

5-Methoxy-1-methyl-2-(1-methyl-1,2,5,6-tetrahydropyridin-3-yl)-1 H -benzimidazole ($\mathbf{8 A b}$).

This compound was obtained as yellow powder, yield 61%, $\mathrm{mp} 91-93^{\circ}$; ir (potassium bromide): $2950(\mathrm{CH}), 1630,1450 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 7.34(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C} 7-\mathrm{H}, J=8.9 \mathrm{~Hz}), 7.11(\mathrm{~d}, 1 \mathrm{H}$, C4-H, $J=2.3 \mathrm{~Hz}$), 6.93 (dd, 1H, C6-H, $J=2.3 \mathrm{~Hz}, 8.9 \mathrm{~Hz}$), 6.34 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{C} \mathrm{l}^{\prime}-\mathrm{H}$), 3.82, $3.81\left(2 \mathrm{xs}, 6 \mathrm{H}, \mathrm{OCH}_{3}, \mathrm{~N}_{1}-\mathrm{CH}_{3}\right), 3.43(\mathrm{ABq}$, $2 \mathrm{H}, \mathrm{C} 2^{\prime}-\mathrm{H}$), 2.72 (t, 2H, C6'-H), 2.51 (m, 2H, C5'-H), 2.49 (s, 3H, NCH_{3}); ${ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 158.4$ (C-5), 153.6 (C-2), 143.8, 132.2 (C-8, C-9), 132.6 (C-4'), 127.7 (C-3'), 114.5, 112.0, 101.9 (arom. C), $56.6\left(\mathrm{C}-2^{\prime}\right), 56.4\left(\mathrm{OCH}_{3}\right), 52.2\left(\mathrm{C}-6^{\prime}\right), 45.8\left(\mathrm{NCH}_{3}\right)$, $32.4\left(\mathrm{~N}_{1}-\mathrm{CH}_{3}\right)$, $27.1(\mathrm{C}-5 ') ; \mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}(257.1528), \mathrm{MS}: \mathrm{m} / \mathrm{z}=$ 257.1526.

Anal. Calcd. For $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O} \cdot\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2} \bullet 1 / 2 \mathrm{H}_{2} \mathrm{O}$: C, 57.29 ; H , 6.22; N, 11.79. Found: C, $57.19 ; \mathrm{H}, 5.93$; N, 11.67.

6-Methoxy-1-methyl-2-(1-methyl-1,2,5,6-tetrahydropyridin-3-yl)- 1 H -benzimidazole ($\mathbf{8 B b}$).

This compound was obtained as pale yellow powder, yield 60 $\%, \mathrm{mp} 99-100^{\circ}$; ir (potassium bromide): 3920 (CH), 1745, 1630 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CD}_{3} \mathrm{OD}+\mathrm{CDCl}_{3}\right): \delta 7.48(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}, J=8.9$ Hz), $7.00(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C} 7-\mathrm{H}, J=2.2 \mathrm{~Hz}$), $6.88(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}, J=2.2$ $\mathrm{Hz}, 8.9 \mathrm{~Hz}), 6.36\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 4^{\prime}-\mathrm{H}\right), 3.87,3.82\left(2 \mathrm{xs}, 6 \mathrm{H}, \mathrm{OCH}_{3}, \mathrm{~N}_{1}-\right.$ CH_{3}), 3.47 (br s, $2 \mathrm{H}, \mathrm{C} 2 \mathrm{'}^{-H}$), 2.77 (t, 2H, C6'-H), $2.55(\mathrm{~m}, 2 \mathrm{H}$, C 5 '-H), $2.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{CD}_{3} \mathrm{OD}+\mathrm{CDCl}_{3}\right): \delta 158.5$ (C-5), 152.2 (C-2), 138.0, 137.0 (C-8, C-9), 131.7(C-4'), 127.0 (C$\left.3^{\prime}\right), 120.0,113.3,94.3$ (arom. C), 56.2 (C-2', OCH_{3}), 51.8 (C-6'), $\left.45.4\left(\mathrm{NCH}_{3}\right), 32.2\left(\mathrm{~N}_{1}-\mathrm{CH}_{3}\right), 26.6(\mathrm{C}-5)^{\prime}\right) ; \mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}(257.1528)$, MS: $\mathrm{m} / \mathrm{z}=257.1525$.
Anal. Calcd. For $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O} \cdot\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 57.29 ; \mathrm{H}$, 6.22 ; N, 11.79. Found: C, 56.91 ; H, 5.93; N, 11.59.

5-Chloro-1-methyl-2-(1-methyl-1,2,5,6-tetrahydropyridin-3-yl)1 H -benzimidazole (8Ac).

This compound was obtained as pale yellow powder, yield 73 $\%, \mathrm{mp} 113-116^{\circ}$; ir (potassium bromide): $3080(\mathrm{CH}), 1660,1500$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 7.58(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}, J=2.3 \mathrm{~Hz}), 7.47$ (d, 1H, C7-H, $J=8.9 \mathrm{~Hz}$), 7.28 (dd, 1H, C6-H, $J=2.3 \mathrm{~Hz}, 8.9$ $\mathrm{Hz}), 6.45\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 4{ }^{\prime}-\mathrm{H}\right), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}_{1}-\mathrm{CH}_{3}\right), 3.51(\mathrm{ABq}, 2 \mathrm{H}$, C2'-H), $2.80\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{C} 6^{\prime}-\mathrm{H}\right), 2.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 5^{\prime}-\mathrm{H}\right), 2.55(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{NCH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 154.8$ (C-2), 143.8, 136.4 (C-8, C9), 133.6 (C-4'), 129.6 (C-3'), 127.0 (C-5) 124.8, 119.3, 112.8 (arom. C), $56.3\left(\mathrm{C}-2^{\prime}\right), 52.0\left(\mathrm{C}-6^{\prime}\right), 45.6\left(\mathrm{NCH}_{3}\right), 32.7\left(\mathrm{~N}_{1}-\mathrm{CH}_{3}\right)$, 26.0 (C-5'); $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{ClN}_{3}(261.1033$), MS: $\mathrm{m} / \mathrm{z}=261.1028$.

Anal. Calcd. For $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{ClN}_{3} \cdot\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2}$: C, $54.63 ; \mathrm{H}, 5.16 ; \mathrm{N}$, 11.94. Found: C, $54.53 ; \mathrm{H}, 5.17$; N, 11.68.

6-Chloro-1-methyl-2-(1-methyl-1,2,5,6-tetrahydropyridin-3-yl)1 H -benzimidazole ($\mathbf{8 B c}$).

This compound was obtained as white powder, yield 69%, mp 89-90 ${ }^{\circ}$; ir (potassium bromide): $3020(\mathrm{CH}), 1640,1460 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ $\mathrm{nmr}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 7.57-7.54$ (m, 2H, C4-H, C7-H), 7.23 (dd, 1 H , C5-H), 6.41 (m, 1H, C4'-H), 3.83 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{N}_{1}-\mathrm{CH}_{3}$), 3.41 (br s, 2 H ,

C2'-H), 2.70 (t, 2H, C6'-H), 2.52 (m, 2H, C5'-H), 2.48 (s, 3H, $\left.\mathrm{NCH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 154.5(\mathrm{C}-2), 141.5,138.1$ (C-8, C-9), 133.2 (C-4'), 129.9 (C-3'), 127.3 (C-6), 124.2, 120.5, 111.5 (arom. C), $56.3\left(\mathrm{C}-2\right.$ '), $52.0\left(\mathrm{C}-6\right.$ '), $45.6\left(\mathrm{NCH}_{3}\right), 32.4\left(\mathrm{~N}_{1}-\mathrm{CH}_{3}\right)$, 26.9 (C-5'); $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{ClN}_{3}(261.1033) \mathrm{MS}: \mathrm{m} / \mathrm{z}=261.1027$.

Anal. Calcd. For $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{ClN}_{3} \cdot\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2}$: C, $54.63 ; \mathrm{H}, 5.16$; N , 11.94. Found: C, $54.44 ;$ H, $5.16 ;$ N, 11.55.

5/6-Nitro-1-methyl-2-(1-methyl-1,2,5,6-tetrahydropyridin-3-yl)1 H -benzimidazole ($\mathbf{8 A B d}$).

This compound was obtained as pale yellow powder, yield 50%, $\mathrm{mp} 114-116^{\circ}$; ir (potassium bromide): $2930(\mathrm{CH}), 1525,1455 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 8.40,8.38$ (2xd, 2H, C4-H/C7-H), 8.15, 8.11 (2xdd, 2H, C5-H/C6-H), 7.66, 7.61 (2xd, 2H, C7-H/C4-H), 6.52 (m, $2 \mathrm{H}, \mathrm{C} 4{ }^{\prime}-\mathrm{H}$), 3.93, 3.92 ($2 \mathrm{xs}, 6 \mathrm{H}, \mathrm{N}_{1}-\mathrm{CH}_{3}$), 3.46 (br s, $4 \mathrm{H}, \mathrm{C} 2$ '-H), 2.73 (t, 4H, C6'-H), 2.57 (m, 4H, C5'-H), 2.56 (s, 6H, NCH3); ${ }^{13} \mathrm{C}$ $\mathrm{nmr}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 157.5(\mathrm{C}-2), 145.3,135.1$ (C-8, C-9), 142.4, 141.8 (C-5, C-6), 134.6 (C-4'), 127.3 (C-3'), 119.9, 119.8, 119.4, 116.0, 112.0 (arom. C), 56.4 (C-2'), $52.0\left(\mathrm{C}-6\right.$ '), $45.8\left(\mathrm{NCH}_{3}\right), 33.0\left(\mathrm{~N}_{1-}\right.$ CH_{3}), $27.2\left(\mathrm{C}-5\right.$ '); $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}(272.1273) \mathrm{MS}: \mathrm{m} / \mathrm{z}=272.1269$.
Anal. Calcd. For $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2} \cdot\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 51.75 ; \mathrm{H}$, 5.16; N, 15.09. Found: C, 52.04 ; H, 4.94; N, 14.81 .

Acknowledgments.
We wish to thank Mrs. B. H. Lee for providing the X-ray crystallography data and this work was supported the Korea Ministry of Science and Technology, Kolon Ltd. and KOSEF (R03-2001-000-00025-0) research projects.

REFERENCES AND NOTES

[1a] R. Xu, M.-K. Sim and M.-L. Go, J. Med. Chem., 41, 3220 (1998); [b] J. R. Prous, Cognition-enhancing drugs. In: The Year's Drug News-Therapeutic Targets, 1995 Edition, Prous Science Publishers, Barcelona, 91-113 (1995).
[2] R. M. Moltzen, R. E. Pederson, K. P. Bogeso, E. Meier, K. Frederiksen, C. Sanchez and H. L. Lembol, J. Med. Chem., 37, 4085 (1994).
[3] E. Toja, C. Bonetti and A. Butti, Eur. J. Med. Chem., 27, 519 (1992).
[4a] J. E. Christie, A. Shering, J. Ferguson and A. I. Glen, Br. J. Psychiatry, 138, 46 (1981); [b] J. M. Palacios and R. Spiegel, Prog. Brain Res., 70, 485 (1986).
[5] L. Jeppesen, P. H. Olesen, L. Hansen, M. J. Sheardown, C. Thomsen, T. Rasmussen, A. F. Jensen, M. S. Christensen, K. Rimvall, J. S. Ward, C. Whitesitt, D. O. Calligaro, F. P. Bymaster, N. W. Delapp, C. C. Felder, H. E. Shannon and P. Sauerberg, J. Med. Chem., 42, 1999 (1999).
[6a] M. H. Jung, J.-G. Park, B.-S. Ryu and K.-W. Cho, J. Heterocyclic Chem., 36, 429 (1999); [b] M. H. Jung, J.-G. Park, K.W. Cho and H.-G. Cheon, Korean J. Med. Chem., 9, 8 (1999).
[7] M. H. Jung, S.-W. Choi and K.-W. Cho, J. Heterocyclic Chem., 37, 969 (2000).
[8] J. J. Baldwin, P. K. Lumma, F. C. Novello, G. S. Ponticello and J. M. Sprague, J. Med. Chem., 20, 1189 (1977).
[9] L. J. Mathias and C. G. Overberger, J. Org. Chem., 43, 3526 (1978).
[10] Y. Kikugawa, Synthesis, 124 (1981).

